Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order peltigerineae.
نویسندگان
چکیده
BACKGROUND AND AIMS Following previous findings of high extracellular redox activity in lichens and the presence of laccases in lichen cell walls, the work presented here additionally demonstrates the presence of tyrosinases. Tests were made for the presence of tyrosinases in 40 species of lichens, and from selected species their cellular location and molecular weights were determined. The effects of stress and inhibitors on enzyme activity were also studied. METHODS Tyrosinase and laccase activities were assayed spectrophotometrically using a variety of substrates. The molecular mass of the enzymes was estimated using polyacrylamide gel electrophoresis. KEY RESULTS Extracellular tyrosinase and laccase activity was measured in 40 species of lichens from different taxonomic groupings and contrasting habitats. Out of 20 species tested from the sub-order Peltigerineae, all displayed significant tyrosinase and laccase activity, while activity was low or absent in other species tested. Representatives from both groups of lichens displayed low peroxidase activities. Identification of the enzymes as tyrosinases was confirmed by the ability of lichen thalli or leachates derived by shaking lichens in distilled water to metabolize substrates such as L-dihydroxyphenylalanine (DOPA), tyrosine and epinephrine readily in the absence of hydrogen peroxide, the sensitivity of the enzymes to the inhibitors cyanide, azide and hexylresorcinol, activation by SDS and having typical tyrosinase molecular masses of approx. 60 kDa. Comparing different species within the Peltigerineae showed that the activities of tyrosinases and laccase were correlated to each other. Desiccation and wounding stimulated laccase activity, while only wounding stimulated tyrosinase activity. CONCLUSIONS Cell walls of lichens in sub-order Peltigerineae have much higher activities and a greater diversity of cell wall redox enzymes compared with other lichens. Possible roles of tyrosinases include melanization, removal of toxic phenols or quinones, and production of herbivore deterrents.
منابع مشابه
Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger
BACKGROUND Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger...
متن کاملDirect electron transfer between copper-containing proteins and electrodes.
The electrochemistry of some copper-containing proteins and enzymes, viz. azurin, galactose oxidase, tyrosinase (catechol oxidase), and the "blue" multicopper oxidases (ascorbate oxidase, bilirubin oxidase, ceruloplasmin, laccase) is reviewed and discussed in conjunction with their basic biochemical and structural characteristics. It is shown that long-range electron transfer between these enzy...
متن کاملRedox potentials of the blue copper sites of bilirubin oxidases.
The redox potentials of the multicopper redox enzyme bilirubin oxidase (BOD) from two organisms were determined by mediated and direct spectroelectrochemistry. The potential of the T1 site of BOD from the fungus Myrothecium verrucaria was close to 670 mV, whereas that from Trachyderma tsunodae was >650 mV vs. NHE. For the first time, direct electron transfer was observed between gold electrodes...
متن کاملApplication of Face-Centered Central Composite Design (FCCCD) in Optimization of Enzymatic Decolorization of Two Azo Dyes: A Modeling vs. Empirical Comparison
Biological treatment, especially enzymatic methods, can be employed for effective and environmental- friendly treatment of dye effluents. Laccase, belonging to the blue multi-copper oxidases category, can oxidize a wide variety of substrates, especially synthetic dyes. In this study, laccase was used to biodegrade two azo dyes, i.e., Direct Red 23 and Acid Blue 92. Before conducting the exp...
متن کاملComplete genome sequence of the melanogenic marine bacterium Marinomonas mediterranea type strain (MMB-1T).
Marinomonas mediterranea MMB-1(T) Solano & Sanchez-Amat 1999 belongs to the family Oceanospirillaceae within the phylum Proteobacteria. This species is of interest because it is the only species described in the genus Marinomonas to date that can synthesize melanin pigments, which is mediated by the activity of a tyrosinase. M. mediterranea expresses other oxidases of biotechnological interest,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 98 5 شماره
صفحات -
تاریخ انتشار 2006